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Part-l & Il

Objective: Graph Shifting Steps:
New Version| Start with one of the basic graphs and sketch the graph ~ © Selest the basic graph for the given fnction.
of the following functions.

Solution f@) = —xt+1

Solution : ¥

© shift the basic graph using the given amows

© Reflost pants of the graph long v-avis using
he eflect button

We start with the graph of y = x2, reflect the graph in the
x-axis , and then lift the resulting graph vertically up 1 unit.

r r
reflecting

 CEE R
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Objective: Limit (Graphical Approach)

Find:  lim S
x—0 x

Solution:

/ © Graph ¥, =

Discussion

St XX (Fioure )
X
r ¥y

e
(x getting closer (x getting closer
to 0 from left) to 0 from right)

| x —

0

- e (Figure ) (Figure b)

® Use ZOOM-IN at (0, 0)

© Use TRACE near x = 0. It shows that p-values get closer to 1.998 as x gets
closer to 0 from left.

© The p-values get closer to 1.9998 as x gets closer to 0 from right.

sindx 2

Therefore, lim
=0 x Copyright & 200 Eduso Intemational, Inc
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Objective: Related Rates L‘ il i‘ L‘ Deleta.
New Version| A man 6 fi. tall is walking away from a lamp post 15 fi. tall. _5| il l‘ i‘ =
- If the man is walking at a speed of 3 fi/s, how fast is the length
M of his shadow changing when he is 61 f¢. from the lamp post? | o] ’E
Rate of change of shadow = filsec Done
Solution :
Gx+ 6y =15y Previous steps a 3 fils C
_ 2
o 6x = 9y or )—:Tx N s
® Take derivative with respectto £ 2 .
dr _ 2de o) £y B x
dt 3 dit
c
. dx P dy 2
We substitute =~ =3 in(i), weget & - =(3) = 2 fifsec
di 0, weeet G 7@ fisee 15
. . . . . &
Therefore, the rate at which the shadow is increasing is 2 filsec.
(bogy By B xD
di —_—
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Objective: Optimization

] 2] 3] 4] 5]
- Find the dimensions of a right cireular cylinder with maximum
New Version wvolume that can be inscribed in a cone of height 16 in. and base iJ i‘ iJ i‘ _"J ’E
solution | radius 4 in =l
Radivs[ | Meight [ ] Dome
Solution :

y=16-4x 3 V=ax’y  Previoussieps

Critical points :  x =0, x = % ‘ Details A
V= m(16 xi-4xY)

8)_ 1024z

V=0 V(T) 77

and V(4) = 0.

® The largest volume V occurs when x = %

® Therefore, the dimensions of the inscribed cylinder
are:
Radius x = —

Height y = 16—4(%) = %

.

h N

Objective: A imating Area under a Curve and Above the x - axis
L-Rule rectangles | R-Rule rectangles | <) Both cases |
Basic Concept
y L-Rule rectangles

Four erRUIE ] t"e;z By increasing the number of rectangles

an R e wiver by the e ool
e | the area given by the inscribed rectangles

1necreases.

Rectangles y=at
Eight L- Rule N . o

and O 1 2 31 4 x This means that, by increasing the
Eight R-Rule S number of rectangles, the area given by
a1 the inseribed rectangles gets closer to the

\ J actual area,
Area
Strategy { |zam
Summary y=a
(slow)
(fast) 0123456748 x
EEREEEEED

&k oy 62508 Edvon st

Objective: Volume of a Solid of Revolution ] 2] 3] 4] 5]
New Version| The region bounded by the x - axis. ¥ =4/ a® - x* istotated 6| 7| s| 3] o
about the x - axis. Find the volume of the solid generated. E II' m III

ity Enter the answer here Al

Solutin: [ = [T==r

V= :rj'(akx’)dr Previous steps

Step5:  The limits are clearly from —a to a.

Step6: We go back to sicp 4 and use the limits:
4

vV = nj.(ul—x‘)dx

xiqa
= nz.xf—]
[#-5 1.

@) ()

2a®  24°
=5 T)

dna’

& & =3
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Part-l & Il

ial Function

Objective: ivative and Antiderivative of

Nw\l.r'ionl Find J. 3
Solution

Solution :

1 2] 3] 4] | sin] cos] san]
8] 7] 8] 8] of csef sec] cot|
CIEIE D] o el
-
Use * for exponents. Click on * again ‘
fter entering exponent.

Enter the answer here

Recall the standard form : j eI fr) de = /Y + €
We need the derivative of the power next to the power function before dx.
N d
Since = +5 = 3
ince (3x )
We write 3 next to dx to make it fif into the standard form for the rule.

Therefore,
J.Jeh”dx _ J’eh”.."sdx

3x
= e + C.

Copyright ©2005 Educ Intemational, Inc.

Objective: Integrals of tan" x or sec” x

( Discussion Example 1 Example 2
To integrate é]
tan’ x or Evaluate j.vec dx dv.
cot® x
Solution
We borrow sec? x from secd x and write it as:
-
! j.VBCAX = J' sectx . sect x dx
To integrate
sect x or
csel i Write the remaining integrand in terms of tan x; use sec’x = 1+ tan®x
= j(l + mnlx) . seelx dx
Prepare for
= J' seelx de  + J' tan? x . sec?x dx generalized
To integrate power rule.
tan® x sec’ x
2 .
iy = tamx + J'(mn x) seckx dv  wse the generalized
power rule
— tamx + ta’x + ¢ Details

& ’
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Objective: Graphs Of Polar Equations 1| 2| 3] 4| 5| [oeee
New Version|  Skeich the graph of r = 2 sin 30,
NewVersin] & s |2 2 8 ] o] o]
Solution Select The Answer E E E E Clear
Solution :
®  Test for symmetries Details

There is no symmeiry about the x-axis.
The graph to be symmetrical about the y-axis.

©  To find the tangent lines at the pole © Details
Therefore, 0 = 0, n/3, 2x/3, n, 4x/3, 5x/3.

©  Draw Approximate shapes of the curve near the pole ©

©  We find a few points to plot on both sides of the tangent line.
Since the graph is symmerrical about the vertical
axis (y-axis),
we plot points only on the right side of y-axis.
0 0 /6 | n/2
r 0 2 -2
®  Plotthe above points and use the symmetry. Note

& &
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2
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h
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